Involvement of SRSF11 in cell cycle-specific recruitment of telomerase to telomeres at nuclear speckles

نویسندگان

  • Ji Hoon Lee
  • Sun Ah Jeong
  • Prabhat Khadka
  • Juyeong Hong
  • In Kwon Chung
چکیده

Telomerase, a unique ribonucleoprotein complex that contains the telomerase reverse transcriptase (TERT), the telomerase RNA component (TERC) and the TERC-binding protein dyskerin, is required for continued cell proliferation in stem cells and cancer cells. Here we identify SRSF11 as a novel TERC-binding protein that localizes to nuclear speckles, subnuclear structures that are enriched in pre-messenger RNA splicing factors. SRSF11 associates with active telomerase enzyme through an interaction with TERC and directs it to nuclear speckles specifically during S phase of the cell cycle. On the other hand, a subset of telomeres is shown to be constitutively present at nuclear speckles irrespective of cell cycle phase, suggesting that nuclear speckles could be the nuclear sites for telomerase recruitment to telomeres. SRSF11 also associates with telomeres through an interaction with TRF2, which facilitates translocation of telomerase to telomeres. Depletion of SRSF11 prevents telomerase from associating with nuclear speckles and disrupts telomerase recruitment to telomeres, thereby abrogating telomere elongation by telomerase. These findings suggest that SRSF11 acts as a nuclear speckle-targeting factor that is essential for telomerase association with telomeres through the interactions with TERC and TRF2, and provides a potential target for modulating telomerase activity in cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tumorogensis : The Dual Role of Telomerase

  Carcinogenesis is a multistep process characterized by the gradual accumulation of genetic changes that ultimately lead to cancer. These genetic mutations can impart limitless replicative potential to the cancer cells making them immortal. Telomeres are repeat nucleotide sequence TTAGGG that are present at the end of chromosomes. Its functions are to protect the chromosomal ends and to ensur...

متن کامل

Differential arrival of leading and lagging strand DNA polymerases at fission yeast telomeres.

To maintain genomic integrity, telomeres must undergo switches from a protected state to an accessible state that allows telomerase recruitment. To better understand how telomere accessibility is regulated in fission yeast, we analysed cell cycle-dependent recruitment of telomere-specific proteins (telomerase Trt1, Taz1, Rap1, Pot1 and Stn1), DNA replication proteins (DNA polymerases, MCM, RPA)...

متن کامل

The Principal Role of Ku in Telomere Length Maintenance Is Promotion of Est1 Association with Telomeres

Telomere length is tightly regulated in cells that express telomerase. The Saccharomyces cerevisiae Ku heterodimer, a DNA end-binding complex, positively regulates telomere length in a telomerase-dependent manner. Ku associates with the telomerase RNA subunit TLC1, and this association is required for TLC1 nuclear retention. Ku-TLC1 interaction also impacts the cell-cycle-regulated association ...

متن کامل

Telomerase Cajal body protein 1 depletion inhibits telomerase trafficking to telomeres and induces G1 cell cycle arrest in A549 cells

Telomerase Cajal body protein 1 (TCAB1) is a telomerase holoenzyme, which is markedly enriched in Cajal bodies (CBs) and facilitates the recruitment of telomerase to CBs in the S phase of the cell cycle. This recruitment is dependent on TCAB1 binding to a telomerase RNA component. The majority of cancer cells are able to grow indefinitely due to telomerase and its mechanism of trafficking to te...

متن کامل

Pif1- and Exo1-dependent nucleases coordinate checkpoint activation following telomere uncapping

Essential telomere 'capping' proteins act as a safeguard against ageing and cancer by inhibiting the DNA damage response (DDR) and regulating telomerase recruitment, thus distinguishing telomeres from double-strand breaks (DSBs). Uncapped telomeres and unrepaired DSBs can both stimulate a potent DDR, leading to cell cycle arrest and cell death. Using the cdc13-1 mutation to conditionally 'uncap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2015